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Abstract 

 

   To test for equality of variances given two independent random samples from univariate normal populations, 

popular choices would be the two-sample F test and Levene‟s test. The latter is a nonparametric test while the 

former is parametric: it is the likelihood ratio test, and also a Wald test. Another Wald test of interest is based on the 

difference in the sample variances. We give a nonparametric analogue of this test and call it the R test. The R, F and 

Levene tests are compared in an indicative empirical study. 

  For moderate sample sizes when assuming normality the R test is nearly as powerful as the F test and nearly as 

robust as Levene‟s test. It is also an appropriate test for testing equality of variances without the assumption of 

normality, and so it can be strongly recommended.  
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1. Introduction 
 

  In the two-sample location problem we are given two 

independent random samples X11, ..., X1m and X21, ..., 

X2n. The pooled t-test is used to test equality of means 

assuming that the variances are equal and that the 

samples are from normal populations. Welch‟s test 

can be used when equality of variances is suspect but 

normality is not, and the Wilcoxon test can be used 

when normality is in doubt. 

  The corresponding dispersion problem is of interest 

to confirm the validity of, for example, the pooled t-

test, and for its own sake. As an example, testing for 

reduced variability is of interest in confirming natural 

selection. In exploratory data analysis it is sensible to 

test whether one population is more variable than 

another. If it is, the cause may be that one population 

is bi-modal relative to the other; the consequences of 

this in both the scenario and the model can then be 

explored in depth. 

  Here, a new test for equality of variances based on 

what might be called a nonparametric version of a 

very natural Wald test is introduced. In an indicative 

empirical study we show that, in moderately-sized 

samples, the new test is nearly as powerful as the F 

test when normality may be assumed, and is nearly as 

robust as Levene‟s test when normality is in doubt. 

See [3, p.519], who say that the “F test and other 

procedures for inference about variances are so 

lacking in robustness as to be of little use in practice.” 

The new test gives a counterexample to that 

proposition. 

  We acknowledge that the usefulness of the new test 

is limited to moderate sample sizes of at least 25 each, 

a reasonable expectation in a serious study aiming at 

reasonable power which could not be hoped for with 

samples of size 10 or so. 

  We are aware of more expansive comparative studies 

such as those of [1] and [2]. Our goal here is not to 

emulate these studies but to merely show that the new 

test is competitive and interesting. Reflecting our 

limited study, we restrict attention to samples of equal 

size from both populations and a 5% level of 

significance. 

  In Section 2 the new test is introduced. In Section 3 

we investigate test size. It is shown that when 

normality may be assumed the asymptotic 2
 critical 

values may be used for moderate sample sizes, 

achieving test sizes „close‟ to nominal. We then show 

that when sampling from t distributions with various 

mailto:David.Allingham@newcastle.edu.au
mailto:John.Rayner@newcastle.edu.au


 

Fourth Annual ASEARC Conference 2 February 17—18, 2011, Paramatta, Australia 

 

degrees of freedom, the F test is highly non-robust for 

small degrees of freedom, as is well-known for fat-

tailed distributions. The new test is challenged 

somewhat for small degrees of freedom, but its 

performance is only slightly inferior to the Levene 

test. 

  In Section 4 it is shown that when normality holds 

the new test is not as powerful as the Levene test for 

small sample sizes, but overtakes it for moderate 

sample sizes of about 25. The new test is always 

inferior to the optimal F test, but has power that 

approaches that of the F test, its power being at least 

95% of that of the F test throughout most of the 

parameter space for sample sizes of at least 80. This, 

in conjunction with the fact that the new test is valid 

when normality doesn‟t hold, is a strong reason for 

preferring the new test for moderate sample sizes. 

 

 

2. Competitor Tests for the Two-Sample 

Dispersion Problem 

 

  We assume independent random samples of sizes m 

and n from normal populations, N(i, 
2
i ) for i = 1, 2. 

We wish to test H: 
2
1  = 

2
2  against the alternative 

K: 
2
1   

2
2 . If 2

iS , i = 1, 2 are the unbiased sample 

variances, then the so-called F test is equivalent to the 

likelihood ratio test and is based on the quotient of the 

sample variances, 
2
1

2
2 / SS  = F, say. It is well-known, 

and will be confirmed yet again in Section 3, that the 

null distribution of F, namely Fm–1, n–1, is sensitive to 

departures from normality. If the cumulative 

distribution function of this distribution is Fm–1, n–1(x), 

and if cp is such that Fm–1, n–1(cp) = p, then the F test 

rejects H at the 100% level when F < c/2 and when 

F > c1–/2. 

  Common practice when normality is in doubt is to 

use a nonparametric test such as the Levene test or the 

Mood test. In the two-sample case, Levene‟s test is 

just the pooled t-test applied to the sample residuals. 

There are different versions of Levene‟s test using 

different definitions of residual. The two most 

common versions use the group means, || .iij XX  , 

and the group medians, |
~

| .iij XX  , in obvious 

notation. The latter is called the Brown-Forsythe test. 

The distribution of the test statistics, say L and B, that 

are the squares of the pooled t-test statistics using 

mean- and median-based residuals, respectively, is 

approximately F1, m+n–2. Again it is well-known that 

the tests based on L and B are robust, in that when the 

population variances are equal but the populations 

themselves are not normal, they achieve levels „close‟ 
to nominal. However this happens at the expense of 

some power. As this paper presents an indicative, 

rather than exhaustive, study, we will henceforth 

make comparisons only with the Levene test. 

  We now construct a new test that we will call the R 

test. For univariate parameters  a Wald test statistic 

for H:  = 0 against the alternative K:   0 is based 

on ̂ , the maximum likelihood estimator of , usually 

via the test statistic )ˆvar(est/)ˆ( 2
0   , where 

)ˆvar(est   is a consistent estimate of )ˆvar( . This 

test statistic has an asymptotic 
2
1  distribution. As 

well as being the likelihood ratio test, the F test is also 

a Wald test for testing H:  = 2
1

2
2 /  = 1 against K:  

≠ 1. 

  A Wald test for testing H:  = 
2
1

2
2    = 0 against 

K:  ≠ 0 is derived in [4]. The test statistic is 
 

)1/(2)1/(2

)(

2
4
21

4
1

22
2

2
1





nSnS

SS
 = W, 

 

say.  Being a Wald test, the asymptotic distribution of 

W is 
2
1 , while its exact distribution is not obvious. 

However, W is a one-to-one function of F, and so the 

two tests are equivalent. Since the exact distribution 

of F is known, the F test is the more convenient test. 

  The variances var(
2
jS ) used in W are estimated 

optimally using the Rao-Blackwell theorem. This 

depends very strongly on the assumption of normality. 

If normality is in doubt then we can estimate var(
2
2

2
1 SS  ) using results in [5]. For a random sample 

X1, ..., Xn and population and sample central moments 

r and mr =  


n

j

r
j nXX

1
/)( , r = 2, 3, ... , [5] gives 

 

E[mr] = r + O(n
–1

) and  

var(m2) = (4 – 
2
2 )/n + O(n

–2
). 

 

Applying [5, 10.5], 
2
2  may be estimated to O(n

–1
) by 

2
2m , or, equivalently, by n

2
2m /(n – 1) = S

4
, where S

2
 

is the unbiased sample variance. It follows that 

var(m2) may be estimated to order O(n
-2

) by (m4 – 
2
2m

)/n. A robust alternative to W is thus 

 

2
4
2241

4
114

22
2

2
1

/)(/)(

)(

nSmnSm

SS




 = R, 

 

say, in which mi4 , i=1, 2, are the fourth central sample 

moments for the ith sample. We call the test based on 

R the R test. In large samples the denominator in R 

will approximate var(
2
2

2
1 SS  ) and R will have 

asymptotic distribution 
2
1 . 
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  We emphasise that the R test is a Wald test in the 

sense described above. Since it doesn‟t depend on any 

distributional assumptions about the data, it can be 

thought of as a nonparametric Wald test. It can be 

expected to have good properties in large samples no 

matter what distribution is sampled. 

  All the above test statistics are invariant under 

transformations Yij = a(Xij – bi), for constants a, b1 and 

b2 and for j = 1, ..., ni and i = 1, 2. 

 

 

3. Test Size Under Normality and Non-normality 
 

  Under the null hypothesis, the distribution of F is 

known exactly, that of L is known approximately, and, 

as above, the distribution of R is known 

asymptotically. When analysing data, these 

distributions are used to determine p-values and 

critical values. We now investigate their use in 

determining test size. 

  Two empirical assessments of test size, defined as 

the probability of rejecting the null hypothesis when it 

is true, will now be undertaken. The test statistics are 

scale invariant, and so it is sufficient under the null 

hypothesis to take both population variances to be 

one. As this is an indicative study, we take m = n and 

the significance level to be 5%. 

  In the first assessment we assume normality. In 

Figure 1, the extent of the error caused by using the 

asymptotic critical point 3.841... in the R test is 

shown, using the proportion of rejections in K = 

100,000 random samples. For m = n = 10 and 30 these 

proportions are approximately 20% and 8%. Most 

would hopefully agree that the former is not 

acceptably „close‟ to 5%, whilst the latter is. 

  For various n, we estimated the 5% critical points for 

each test by generating K = 100,000 pairs of random 

samples of size n, calculating the test statistics, 

ordering them and identifying the 0.95Kth percentile. 

The estimated critical points of R approach the 
2
1  

5% critical point 3.841.... These estimated critical 

points will be used in the subsequent power study 

later to give tests with test size exactly 5%.  

  Even if the R test has good power, the test is of little 

value unless it is robust in the sense that, even when 

the sampled distributions are not normal, the p-values 

are reasonably accurate. Thus in the second 

assessment we estimate the proportion of rejections 

when the null hypothesis is true and both the 

populations sampled are non-normal. We consider 

different kurtoses via t distributions with various 

degrees of freedom. If the degrees of freedom are 

large, say 50 or more, the sampled distribution will be 

sufficiently normal that the proportion of rejections 

should be close to the nominal.  
 

 
Figure 1: Proportion of rejections of the R test using 
the 5% critical point 3.841... for sample sizes up to 
100. 

 

 
Figure 2: Test sizes for the F (dots), L (dashes) and R 
(solid line) tests for t distributions with varying 
degrees of freedom. 

 

  In Figure 2 we show the proportion of rejections for 

the Levene, F and R tests when sampling from t 

distributions, for  = 1, ..., 50, with sample sizes of m 

= n = 5, 25, 80 and 200. Interestingly, the achieved 

test size is closer to the nominal 5% value for smaller 

samples, in all cases. 

  It is apparent that the F test performs increasingly 

poorly as the degrees of freedom diminish. It is also 

interesting to note that in this scenario the F test is 

always liberal (exact size greater than 5%) while the R 

test is always conservative (exact size less than 5%). 

In general, the latter is to be preferred.  

  The Levene test generally has exact level closer to 

the nominal level than the R test except for small 

degrees of freedom. Moreover, while the level of the 

R test is almost always reasonable, for very small   

the level is not as close to the exact level as perhaps 

would be preferable. 
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4. Power Under Normality 

 

  For the F, Levene and R tests we estimated the 

power as the proportion of rejections from K = 

100,000 pairs of random samples of size n, where the 

first sample is from a N(0, 1) population and the 

second is from a N(0, 2
) population with 2

 > 1. To 

compare like with like, estimated critical values that 

give virtually exact 5% level tests were used. It is 

apparent that for sample sizes of about 20 the Levene 

test is superior to the R test; that between 

approximately 20 and 30 the R test takes over from 

the Levene test; and that thereafter the R test is always 

more powerful than the L test.  These results are 

shown in Figure 3. 

 

 
Figure 3: Power of the 5% level L test (solid line) and R 
test (dashed line) for various sample sizes. 

 

  When normality holds, both the Levene and R tests 

are always less powerful that the F test. This is 

explored in Figure 4, which compares the Levene test 

to the F test in the left-hand panel, and the R test to 

the F test in the right-hand panel. The figure shows a 

contour plot of the regions in which the ratio of the 

power of the stated test to the F test is either less than 

95%, between 95% and 99.99%, or greater than 

99.99%. The corresponding regions are far smaller for 

the Levene test than the R test. Moreover, it appears 

that for approximately m = n > 80, the power of the R 

test is always at least 95% of the power of the F test. 

 

 

5. Recommendations 

 

  The R test is a nonparametric Wald test, so that when 

sampling from any non-normal distribution it can be 

expected to be at least as powerful as any competitor 

test in sufficiently large samples. 

 
Figure 4: Contour plots of the power of the L test (left) 
and R test (right) relative to the F test power, showing 
regions in which the power ratios are less than 95%, 
between 95% and 99.99%, and greater than 99.99%. 

 

  If normality can be assumed then the F test is both 

the likelihood ratio test and a Wald test, and is the 

appropriate test to apply. However, if normality is 

doubtful then the well-known non-robustness of the F 

test means that tests such as the Levene test are more 

appropriate for small-to-moderate sample sizes. For 

sample sizes of at least 30, though, the R test is more 

powerful than the Levene test, and may be 

implemented using the asymptotic 
2
1  distribution to 

obtain critical values and p-values. 

  If normality cannot be assumed, then the F test is no 

longer an optimal test, whereas the R test is. For 

moderate sample sizes of at least 30 in each sample, 

the R test has test size very close to the nominal and is 

more powerful than both the F and Levene tests. It 

should then be the test of choice. 
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